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Abstract. We demonstrate the applicability of a recently derived cubic response 
function formalism for performing fully analytical calculations of hypermag- 
netizabilities, their anisotropy and their dispersion. The calculations involve the 
noble gas atoms, He, Ne, and Ar, and the corresponding isoelectronic halogen 
anions and alkali cations. 

1. Introduction 

Although the theory for magnetically induced non-linear properties of molecules has 
been known for many years [1] it is not until quite recently that ab initio calcalutions of 
such quantities have been undertaken to any appreciable extent. The two experimental 
effects of most relevance with respect to magnetic non-linearity are the Faraday effect 
describing the degree of polarization rotation by a magnetic field, and the Cot- 
ton-Mouton effect describing the birefringence of a magnetic material. The key 
constants for those effects are the Verdet constant and the Cotton-Mouton constant, 
respectively. Calculations of such constants have previously been hampered by com- 
putational difficulties such as slow convergence of basis sets and origin dependency 
[2-8]. For the Cotton-Mouton effect, which refers to the anisotropy of the hy- 
permagnetizability, t/, a further complication is that its paramagnetic part requires 
perturbation theory of high order. Except for the computations of Jamieson on 
hydrogen and helium with the fourth-order coupled Hartree-Fock method [9], 
calculations of these constants have been accomplished by means of finite field 
calculations. However, such calculations are quite elaborate for the hypermagnetizabil- 
ity and the precision of values might depend on the particular differentiation scheme. 
In the present work it is shown that cubic response theory offers an analytical 
approach to the calculations of hypermagnetizabilities that is generally applicable. 

2. Method 

The hypermagnetizability anisotropy, A~/, that for atoms is directly proportional to 
the measurable Cotton-Mouton constant, relates to quadratic and cubic response 
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functions in the following way: 

At/( - 09;09, 0, 0) = t/ . . . . .  - t/x~,yr, 

1 L rlU,kt( -- 0 9 ; 0 9 , 0 , 0 )  = - -  -~( (ri;r j, Lk, l) )o,,o,o -- ( (ri;r  j ,Qkt) ),o,o. (1) 

The third-order response function is the paramagnetic contribution, 17 p, and the 
second-order response function involving the quadrupole operator is the diamag- 
netic contribution, qa. Since t/~x, xx = 0 for atoms, only ( (x;x ,  Ly, Ly)),~,o,o needs to 
be evaluated in the present calculations. The paramagnetic contribution has so far 
caused difficulties and various approximations have been used. In the language of 
response functions it is possible to calculate t/v through numerical differentiation of 
a second-order response function (finite-field calculations). Magnetic properties 
have proven difficult to determine in this fashion and the accuracy of the results 
may depend on the actual algorithm for the differentiation. We demonstrate here 
the application of recently developed third-order response theory [1 0] to calculate 
hypermagnetizabilities, thereby eliminating the need for numerical differentiation. 
We use for this purpose the noble gas atoms and their halogen anion and alkali 
cation isoelectronic counterparts. 

At present we have an implementation of the expressions for the third-order 
response function for reference state wave functions of closed-shell Hartree-Fock 
type. This approximation is called the random phase approximation (RPA). The 
response functions are the Fourier coefficients in the Taylor expansion of the 
time-dependent expectation values of an operator as the reference state is per- 
turbed by a field. Thus the cubic response function will contain all terms to the 
expectation value that are of third-order in the perturbation. Many molecular 
properties, both magnetic and electronic, are successfully described within this 
formalism and deriving the working expressions for the third-order response 
functions is just another step in this development. Among other properties we will 
then have the possibility to estimate the hypermagnetizability fully analytically. 
The cubic response function reads 

[41 B C D 
( (A;B ,C ,D) )  ........... = N A ( o ) I  + O) 2 "~ 093)Tjklm Uk (09,)Ul ( 0 9 2 ) N m ( 0 9 3 )  

T t31 &o co -N](091 +092 +co3)[ 1, 2 + 093)N (091)Nf (092,093) 

[31 + Tjk, ((D2,091 -~- co3)uC(092)u~D(~1,o)3) 

[3] 109 09 + 3, 1 + 09 )N (09 )N, ¢(091,092)] 

[2] CD [2] BD + N~(091 + 092 + 093)[Bjk Nk (092,093) + Cjk Nk (091,093) 

[2] BC [31 C + Djk Nk ( 0 ) 1 , O ) 2 ) ' ]  - -  NA(091 + 092 -k 093)[Bj(koNk(092) 

[3] B D [3] B × Nt°(093) q'- Cj(koNk (091)Nt (093) + Oj(koNk(091) 

[21 B CD × NC(092)] + A Ok) [Nj (091) Nk (092,093) 

+ NC(092)NkBD(091,093) + Nf(093)NBkC(091,092)] 

[3] B C D -- A ~ikoNk (09,)Nk (092)N1 (093), (2) 

NX(09.) = (E TM -- 09.S[2])~1X[k11 X e {A,B,C,D}, (3) 
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N X Y  (O.)a,O.)b) = ( E  [2] - -  ((D a "~ COb)St21)~ l XY~lJ(co.,cob), 

Xy~l l (CO. ,~b)  t31 x r t21 r = Tjkt (O).,~ob)Nk (Co.)Nl (COb) -- Yjk N ,  (o).) - X}~1N~(COb), 

X Y ~ { B C ,  BD, CD}, (4) 

where we have introduced 

[3] t ~, [3] ,-,[3] , ~,[3].~ 
TjkI(C01,C02) = - -  ( D l ~ j k  l - -  ( 5 )  k a-~ j(kl) t~ 2 ~ jkl )~ 

T[4] [4] ,,[4] , o[4] , _ [4] jkl,, = (Ej(kl,,) -- ~01 ~jk(l,,, -- C02 ~jl(k,,, 0% Sj.,(kO). (6) 

Indices enclosed in parenthesis are to be permuted symmetrically. The E Eil, SEil, and 
A Eil matrices are hessian, overlap and property matrices of different order. We refer 
to Ref. [11] for the definitions. Further, we assume that A, B, C and D refer to 
one-electron operators corresponding to the perturbing fields. Thus the evaluation 
of the third-order response function can be separated into two steps; first solving 
a set of seven linear equations (3) and (4) to obtain the corresponding seven 
response vectors to be followed by the matrix multiplication (2) for the response 
function value. The coding of the cubic response formalism includes "direct" 
strategies in terms of direct one-index transformations, direct atomic orbital 
constructions of matrices, and direct iterative linear transformations in the 
solutions of the response equations. None of these are, however, critical to the 
applications presented here. 

3. Basis sets 

Hyperpolarizability calculations are known to be very sensitive to the choice of 
basis set, especially considering polarizing and diffuse functions. We have per- 
formed a basis set investigation for He and Ne and then employed uncontracted 
basis sets with exponents from the ANO basis sets by Widmark et al. [12, 13] and 
Pierloot et al. [14] for the full series of calculations. The basis sets A1-A5 for He are 
based on the exponents from a (10s) set of van Duijneveldt [15] and the basis sets 
B1-B4 for Ne are based on the basis set by Cernusak et al. [16]. A6 and A5 are the 
uncontracted ANO basis set. Table 1 lists the employed contractions. All calcu- 
lations use Cartesian functions. 

Table 1. Basis set contractions 

He Ne Atom 

A1 (10s5p) B1 (15s10p)/[lOs8p] H -  (8s4p3d) 
A2 (lOs5p5d) B2 (15slOp8d)/[10s8p6d] Li + (14s9p4d3f) 
A3 (lOs5p5d3f) B3 (15slOp8d4f)/[lOs8p6d4f] F -  (14s9p4d3f) 
A4 ( lZs8p7d4f)  B4 (15slOp8d4flg)/[10s8p6d4flg ] Na + (17s12p5d4f) 
A5 (lOs5p4d3f2g) B5 (14s9p4d3f) C1- (13saOp4d) 
A6 (9s4p3d) Ar (13slOp4d) 
" (12s8p6d3f) K + (17s12p4d) 

a From Ref. [5] 
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4. Results 

Basis  set  i n v e s t i g a t i o n s  h a v e  b e e n  c a r r i e d  t h r o u g h  for  H e  a n d  Ne ,  see T a b l e  2. F o r  
H e  we see t h a t  t he  p a r a m a g n e t i c  p a r t  is well  d e s c r i b e d  us ing  on ly  s- a n d  p - t y p e  
func t ions .  Th i s  is so  b e c a u s e  n o n - r e d u n d a n t  o rb i t a l  e x c i t a t i o n s  for  t h e  d i p o l e  
o p e r a t o r  a r e  of  t h e  s o r t  s-- ,  p , f  a n d  a d d i n g  d - t y p e  f u n c t i o n s  will t h e r e f o r e  n o t  
s ign i f i can t ly  i m p r o v e  the  p a r a m a g n e t i c  value.  O u r  A6 bas is  set  va lues  u n d e r e s t i -  
m a t e s  r/p by  a b o u t  7 % .  I t  is m o r e  diff icult  to  o b t a i n  a c c u r a t e  va lues  fo r  t he  

d i a m a g n e t i c  par t .  T h e  A6 se t  o v e r e s t i m a t e s  t /~,~x by  1 1 %  a n d  u n d e r e s t i m a t e s  

t/~x,rr by  1 9 %  c a u s i n g  t h e  At/d va lues  to  be  p o o r .  U s i n g  a bas i s  set  w i t h  o n l y  s- a n d  

p - t y p e  f u n c t i o n s  is c lear ly  n o t  suff ic ient  e v e n  for  t he  p a r a m a g n e t i c  c o n t r i b u t i o n  for  
N e  d u e  to  t h e  o c c u p i e d  p orb i ta l s .  T h e  bas i s  set  B3 is i den t i ca l  to  w h a t  Refs. [6, 5] 

u s e d  in  t he i r  n u m e r i c a l  d i f f e r e n t i a t i o n  ca lcu la t ions .  O u r  p a r a m a g n e t i c  values ,  

h o w e v e r ,  d i f fer  f r o m  t h o s e  r e p o r t e d  by  Ref. [6]  b u t  s u p p o r t  t h o s e  f r o m  Ref. [5]  
w i th  o n e  s ingle  e x c e p t i o n ;  we  o b t a i n  tlxx,y r v  = 1.1233 a.u for  2 = 514.5 n m  c o m -  

p a r e d  to  1.124 a.u. O u r  B5 bas i s  se t  va lues  differ  f r o m  the  B3 va lues  w i th  a t  t h e  
m o s t  2 4 % .  D e s p i t e  th is  d i s c r e p a n c y ,  we  will use t hese  bas i s  sets  to  i n v e s t i g a t e  
t r e n d s  for  t he  i s o e l e c t r o n i c  n o b l e  gas - l ike  a t o m s .  T h e  s t a t i c  h y p e r m a g n e t i z a b i l i t y  

resu l t s  a re  p r e s e n t e d  in  T a b l e  3. T h e o r e t i c a l  resu l t s  for  Li ÷ [7]  a n d A r  [5 ,2 ]  

Table 2. Static values for the hypermagnetizability (a.u.) for He and Ne 

Atom ~ x , ,  ~l~x,xx r/~x,rr At/d 

He A1 0.6869 - 1.704 - 2.415 0.711 
A2 0.6868 - 1.182 - 2.794 1.612 
A3 0.6917 - 1.203 - 2.833 1.631 
A4 0.6931 - 1.212 - 2.857 1.645 
A5 0.6882 -- 1.310 - 2.760 1.450 
A6 0.6452 - 1.361 - 2.328 0.966 
a 0.6930 - 1.212 - 2.857 1.645 

Ne B1 0.521 - 1.138 - 2.013 0.875 
B2 1.050 - 2.648 - 4.976 2.328 
B3 1.050 -- 2.042 -- 5.298 3.256 
B4 1.050 -- 2.040 -- 5.295 3.255 
B5 0.928 - 1.908 -- 4.059 2.151 

a From Ref. 1-5] 

Table 3. Static values for the hypermagnetizability (a.u.) 

p d d rlxx,yr rlxx.xx rlxx,ry Atl e 

H-  1.946 × 10 z - 1.974 x 102 - 3.554 x 10 z 
He 6.452 x 10-1 - 1.361 x 100 - 2.328 x 10 ° 
Li + 1.311 x 10 -2 - 2.202 x 10 -2 - 5.061 x 10 -2 

F -  2.313 x 101 - 3.065x 101 - 7.485x 101 
Ne 9.275 x 10-1 - 1.908 x 10 ° - 4.059 x 10 ° 
Na + 1.213x 10 -1 - 2.465 x 10 -1 -6.171 x 10 -1 

C1- 1.101 x 102 - 1.862 × 102 - 4.072 x t0 z 
Ar 1.225 x 101 - 2.409 × 101 - 4.620 x 101 
K + 1.570 x 10 ° - 7.636 x 10 ° -- 1.270 x 101 

1.580 x 102 
9.662 × 10-1 
2.859 x 10 -2 

4.420 x 101 
2.151 × 10 ° 
3.706 × 10-1 

2.210 x 10 z 
2.211 x 101 
5.061 x 10 ° 
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Fig. 1. Paramagnetic 
component, r/~x,., in a.u. Upper 
and lower bar for 2 equal to 
488 nm and o% respectively 

are available in the literature. The static values for At/p and At/d for Li + reported by 
Jamieson [7] are -0 .013115a .u .  and 0.029193a.u., respectively. We obtain 
- 0.01311 and 0.02859 a.u. taken as further motivation for our choice of basis 

sets. 
Within an isoelectronic series we observe a descending hypermagnetizability 

with larger nuclear charge. This holds for all components and we show the 
paramagnetic term, t/xx,rr, in Fig. 1 as an example. The largest difference between 
the positive and the negative ions is found for the He-like series where the values 
span over four order of magnitudes. From Fig. 1 we can also see the difference in 
dispersion; the upper and lower bar for each atom correspond to the different 
wavelength 2 = 488 nm and 2 = 0% respectively. The cations and the noble gas 
atoms display a low dispersion for all components, whereas we see a significant 
dispersion for the anions due to the smaller excitation energy (c.f. Fig. 2). 

5. Discussion 

With this work we have demonstrated a realization of fully analytical calculations 
of hypermagnetizabilities. Stable solutions of the response equations have been 
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Fig. 2. Dispersion for the hypermagnetizability components Arl d (dashed-dotted), r/~x, yy (solid, upper), 
At/(dotted), A~/r (solid, lower), ~/~ .... (dashed, upper), and q~x,yy (dashed, lower) 

found in each of the applied cases. With the present implementation of cubic 
response theory, we thus solve one of the complications encountered in calcu- 
lations of hypermagnetizabilities; others refer to correlation effects, slow basis set 
convergence and origin dependency. The latter can be overcome for the smallest 
molecules by retaining large basis set expansions. However, somewhat larger 
molecules require origin independency, as also has been implemented for lower- 
order magnetic properties through the so-called field dependent London orbitals 
[ t7] ,  molecular orbitals with individual gauges (IGLOS) [18-21],  and also 
through localized orbitals with local origin (LORG) [22]. Implementation of gauge 
independent orbitals, and of multi-configuration reference states describing cor- 
relation, are surely also feasible, although not straightforward, for the cubic 
response functions. 
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